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SUMMARY

The duct ¯ow of Bingham plastic ¯uids is analysed with the variational inequality-based ®nite element method.
The problem of tracking the yield surface is solvable through the regularization technique which can be easily
incorporated into the existing ®nite element code. The existence theorem of this method was established through
the theory of variational inequalities. A small positive constant is added to the second shear rate invariant,
resulting in an apparent viscosity of ®nite magnitude in the unyielding plug zone. This makes the minimization
of the non-differential variational integral possible. In order to achieve convergence at small regularization
parameter, a zero-order continuation is employed. It is also shown that a ®ne tessellation of the ¯ow domain is
necessary for tracking the yield surfaces unambiguously. Two classes of duct ¯ow, namely axial ¯ows in
eccentric annuli and in an L-shaped duct, were investigated. In both cases it was easy to show the presence of the
mobile plugs around the duct centres from the axial velocity pro®les; however, the stagnant plugs at the narrow
side in eccentric annuli with large eccentricity and near the apex of right-angled corners in an L-shaped duct
could only be identi®ed from the calculation of the distributions of the second shear rate or shear stress invariant.
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1. INTRODUCTION

Viscoplastic ¯uids combine the behaviour of rigid solids and non-Newtonian viscous liquids by

differentiating between physical regions where these descriptions hold according to criteria based on

the level of stress in the material. For low stress values the material will not deform, but beyond some

critical value it ¯ows as an inelastic non-Newtonian ¯uid. The Bingham plastic constitutive equation1

is the most often used model for a viscoplastic material. Here regions of rigid solid and viscous ¯uid

behaviour are separated in terms of the von Mises yield condition. The von Mises yield criterion is of

the form

_g � 0 for Pt4Bn2; �1�
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where t is the dimensionless deviatoric stress tensor. Its scale is given by h*�ÿdp*=dz*�, where h* is

the characteristic dimension of a duct and dp*=dz* is the imposed pressure gradient. Pt is the second

invariant of a tensor and is de®ned as 1
2

t : t. _g is the dimensionless shear rate tensor. Its scale is given

by h*�ÿdp*=dz*�=ZB, where ZB is the Bingham plastic viscosity of the viscoplastic ¯uid. Bn is the

Bingham number given as Y=h*�ÿdp*=dz*�, where Y is the yield stress. The three-dimensional

constitutive equation relating the deviatoric stress and the shear rate tensor is given as2±4

t � Bn

�P_g�1=2 � 1

� �
_g for Pt > Bn2; �2�

_gij � vi; j � vj;i; �3�
where v is the ¯uid velocity and P_g is de®ned as 1

2
_g : _g. Equations (1) and (2) de®ne two distinct

regions of ¯ow. In the ®rst the invariant t is less than the yield value and the ¯uid ¯ows as a solid

plug. In the second the stress invariant exceeds the yield stress and the material ¯ows with a

dimensionless non-Newtonian viscosity function Z de®ned as Bn=�P_g�1=2 � 1. The ¯uid and mobile

plug regions are separated by a distinct yield surface.

The composite form of the apparent viscosity points to an important ¯ow characteristic of

viscoplastic ¯uids. As _g becomes small, the plastic contribution Bn=�P_g�1=2 will become important;

furthermore as the von Mises yield criterion suggests, _g vanishes in the plug region and Z becomes

in®nite there. Though the discontinuity in the viscosity curve is essential for characterizing the yield

surface, the in®nite viscosity causes numerical dif®culties in computing the ¯ow ®eld in Bingham

plastic ¯uids as the yield surface is approached. Several methods have been proposed for simulation

purposes. One may simply adopt a ®nite viscosity which is about orders of magnitude greater than the

apparent viscosity in the yielded region whenever the apparent viscosity approaches in®nity.5,6

However, the adoption of a cut-off value seems too arbitrary.

Another approach to computing with the Bingham model is due to Beris et al.,7 who treated the

yield surface as an unknown boundary. The yield criterion served as an additional constraint which is

coupled with the equations of motion for determining the free boundary problem. The pressure and

velocity distributions were solved simultaneously with the location of the yield surface. Although this

approach enabled the tracking of the yield surface, it introduced the complication that the stress

distribution is needed at the a priori unknown free boundary. Szabo and Hassager8 also used the same

method to study the visoplastic ¯ow in eccentric annular geometries; however, their analysis was

restricted to small eccentricity only.

On the other hand, various modi®ed plastic models were proposed such that the viscosity curve

remains continuous and smooth as opposed to the discontinuous curve representing the Bingham

model. Thus the formidable task of the tracking of yield surfaces may be avoided by using these

models. However, with additional parameters introduced,9±11 these models usually do not reduce to

the exact Bingham model in the limit of _g � 0 and the smoothness of the viscosity curve obscures the

clear line between yielded and unyielded regions.

A number of authors12±14 have developed variational principles which hold for the inertialess ¯ow

of viscosplastic ¯uids. Glowinski et al.15 were the ®rst to use variational methods systematically to

compute viscoplastic ¯ows by combining variational inequalities with either ®nite element or ®nite

difference numerical approximations and effective minimization techniques. Two numerical

techniques were proposed by these authors.15 One is the augmented Lagrangian method with which

one solves an associated boundary value problem. This method has been applied to viscoplastic ¯ow

in sudden contractions and non-circular ducts.16,17 Unfortunately, the ¯ow ®led at the corner regions

was not clearly resolved. The other is the regularization method. A small, positive constant, namely

the regularization parameter, is added to the shear rate invariant. This eliminates the in®nite viscosity
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in the plug zone and enables the minimization of the variational integral. Bercovier and Engelman18

studied the cavity ¯ow of Bingham ¯uids with inertial effects and body forces. Though they

employed a regularization parameter of 10714 in a penalty ®nite element formulation and detected

stagnant zones at the corners of a square duct at high yield stress, the shapes of the stagnant regions

are quite unusual. Wang19 applied the regularization method to analyse the complex ¯ow of

viscoplastic ¯uids with shear-rate-dependent viscosity. However, the parameter of 1074 used seemed

too large and the resolution of the yield surface was not satisfactory. Walton and Bittleston20 used the

same method to solve the axial ¯ow of Bingham ¯uids in a narrow eccentric annulus. Bittleston and

Hassager21 calculated the tangential ¯ow ®eld of the same ¯uids in a concentric annulus. These

authors also adopted a somewhat large regularization parameter (1078) without clear explanation.

The duct ¯ow of Bingham ¯uids near the apex of a corner was also considered by Atkinson and Al-

Ali22 based on the method of singular expansion. However, only the singularity results at the corner

regions were given in their study. The global ¯ow ®eld in the entire duct could not be obtained by

their method.

Although substantial research has been directed at deriving closed-form solutions for viscoplastic

¯uids in rectilinear and lubrication ¯ows,23 the analytical solutions can be obtained only for simple

geometries such as a tube or a slit. For viscoplastic ¯uids ¯owing through the non-circular ducts,

numerical means are necessary for calculating the ¯ow ®eld. In the present study the ®nite element

method is used to solve both the global ¯ow ®eld and the ¯ow ®eld in the corner regions. The

problem of tracking the yield surfaces separating the sheared from the unsheared, plug ¯ow region is

solvable through the application of the regularization method, which can be incorporated into the

existing ®nite element code easily. The distributions of the invariants of the shear rate and shear stress

tensors are also presented. These invariants are relevant to the von Mises yield criterion. Furthermore,

it is shown here that the shear rate and shear stress invariants, which are calculated by differentiating

the ¯uid velocity, discriminate the yield surfaces more sharply than the velocity pro®le in many

critical cases. The shapes of the yield surfaces thus found are in some way surprising.

2. MATHEMATICAL FORMULATION AND NUMERICAL PROCEDURES

2.1. Variational formulation for duct ¯ow of Bingham plastic ¯uids

Our approach is to apply ®nite element numerical procedures. It is based on the use of a minimum

variational principle for Bingham plastic ¯uids ®rst given by Prager:12

J �
�

1
2
P_g dO�

�
Bn�P_g�1=2 dOÿ

�
vz dO; �4�

where vz is the dimensionless axial velocity whose scale is given by h*2�ÿdp*=dz*�=ZB. O is the

dimensionless volume of the ¯ow domain. Equation (4) is non-differentiable owing to the in®nite

viscosity in the plug region. Duvaut and Lions14 ®rst developed the corresponding variational

inequality and later Glowinski et al.15 demonstrated the feasibility of the regularization technique

which makes the minimization of (4) possible by adding a small positive constant to P_g. The axial

velocity which minimizes (4) is dependent on the regularization parameter. As the parameter

becomes smaller, the axial velocity tends weakly to the unique solution of the corresponding

variational inequality�
_gij�vz�_gij�uz ÿ vz� dO�

�
Bn�P_g�1=2�uz� dOÿ

�
Bn�P_g�1=2�vz� dO5

�
�uz ÿ vz� dO �5�

for all test velocity ®elds uz�x; y�.
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2.2. Finite element implementation

The ®nite element method was applied to the ¯ow problem by using an isoparametric element. In

each element the co-ordinates and the unknown axial velocity can be written as

x

y

yz

0@ 1A �Pm
i�1

xi

yi

vi

0@ 1ANi�r; s�; �6�

where the curvilinear element in the �x; y�-plane has been mapped onto a square in the �r; s�-plane by

the shape functions Ni. Here the points �xi; yi� are the nodal positions in the �x; y�-plane, vi are the

unknown nodal velocities and m is the number of nodes in the element. It is easy to show that the

variational integral attains its stationary value when the following conditions are satis®ed:

@J=@v1 � @J=@v2 � � � � � @J=@vm � 0: �7�
We now de®ne the inner product

h f ; gi �
�

fg dO: �8�

Substituting (6) into (4) and performing the differentiation leads to a set of non-linear equations

hNi;x; Zvz;xi � hNi;y; Zvz;yi � hNi; 1i; �9�
where a subscript comma represents differentiation. Introducing e as the regularization parameter, the

composite viscosity function Z can be written as a function of both P_g and e:

Z � Bn

�P_g� e�1=2 � 1: �10�

Using vz in (6), the shear rate invariant P_g can be expressed as

P_g � �PNi;xvi�2 � �
P

Ni;yvi�2: �11�
Furthermore, substituting for vz in (9) then gives

�hNi;x; ZNj;xi � hNi;y; ZNj;yi�vj � hNi; 1i: �12�
This equation set can be written in the familiar standard matrix form

Kijvj � fi; �13�
where now

Kij � hNi;x; ZNj;xi � hNi;y; ZNj;yi; fi � hNi; 1i: �14�
Note that the banded matrix K is symmetric and the approximation equations produced here are

identical with those produced by the Galerkin ®nite element procedure.

The Newton±Raphson method is used for solving the non-linear system of equations arising from

the compositive viscosity function. The tolerance of convergence is ®xed at 1076. We have used both

nine-node and six-node Lagrangian elements for ef®cient tessellation of the ¯ow domain. The 363

Gaussian quadrature method was used for numerical integration within each element. However, the

use of too large a regularization parameter not only yields erroneous solutions but also smooths out

the boundary between yielded and unyielded regions such that the location of the yield surface cannot

be determined unambiguously. In order to achieve convergence at small parameter, a zero-order

continuation was used during simulation. Continuation usually starting from a large parameter of

about 1072 could be carried out down to the order of 10720, at which stage the variational integral
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ceased to change and the transitions of the slopes in the pro®les of the shear rate and shear stress

invariants could be clearly shown. No-slip conditions are applied at all solid walls. All the

calculations were performed on an Fujitsu supercomputer model vpp300. The CPU time spent for a

single iteration was about 2 s for 672 elements with a total of 2665 degrees of freedom.

3. NUMERICAL EXAMPLES

3.1. Axial ¯ow in a concentric annulus

We ®rst consider the plastic ¯ow in a concentric annulus where the eccentricity e is zero. The

radius of the inner circle is set to 1�0 and the outer radius is 1�4. Note that the characteristic length of

the annulus is the radius of the inner circle. It is well known that the yield surface is also annular for

Bingham ¯uids, with a dimensionless gap twice the magnitude of the Bingham number. Thus the

annular ¯ow may serve as a check on the validity of the numerical method. Figure 1 shows the ®nite

element tessellation of the half-annulus. Figure 1(a) shows a coarse mesh lay-out with 160 elements

and Figure 1(b) shows a ®ne mesh lay-out with 672 elements. The in¯uence of the regularization

parameter on the variational integral is shown in Figure 2. These are the calculated results from the

®ne mesh at Bn� 0�1 and 0�2. The minimization of the variational integral J in (4) can be clearly

observed, while the values of J decrease as the regularization parameter e decreases for both cases.

The J-values were calculated with the last term in (4) neglected. It can also be seen that the

magnitudes of J reduce to a constant value at small e at Bn� 0�1. Moreover, for Bn� 0�2 the value of

J decreases almost monotonically and ®nally reaches the order of 10716, which clearly indicates that

Figure 1. Finite element meshes for calculations in concentric annulus: (a) coarse mesh; (b) ®ne mesh
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the ¯uid ¯ow is nearly stagnant in the annulus at Bn� 0�2. Figures 3(a) and 3(b) display the

distributions of the axial velocity vz and the stress invariant Pt respectively at Bn� 0�1 and 0�2. Full

broken lines represent the results at different es. At Bn� 0�1 calculations were made at e � 10ÿ11 and

10717 and at Bn� 0�2 calculations were made at e � 10ÿ15 and 10731. In order to see the differences

in the velocities calculated at Bn� 0�2, a log-scale was used for plotting the velocity pro®les. It can

be seen that at Bn� 0�2 the plateaux in the velocity pro®les nearly ®ll the gap across the annulus and

the magnitudes of vz are of the order of 1078 and 10716 for e� 10715 and 10731 respectively. It is

apparent that vz is affected signi®cantly by e in unyielded regions. Furthermore, the distribution of Pt
is also uniform across the whole gap at Bn� 0�2 for both values of e. These results clearly indicate

that the ¯ow is stagnant at Bn� 0�2. We then examine the calculated results at Bn� 0�1. Both the

calculated distributions of vz and Pt at e � 10ÿ11 and 10717 almost coincide, particularly in yielded

regions. However, the magnitudes of vz at the plateaux calculated at different es can only agree up to

Figure 2. Variation in variational integral J with regularization parameter e at Bn� 0�1 and 0�2; calculations based on ®ne mesh

Figure 3. Distributions of (a) axial velocity and (b) stress invariant Pt along radial direction at various regularization
parameters
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the third signi®cant digit. In addition, plateaux can be seen in both vz and Pt curves at Bn� 0�1 and

both plateaux begin at r� 1�1 and end at r� 1�3. These plateaux in fact represent the mobile plug

region with a width of 0�2. This value agrees exactly with the analytical solution. Also note that at

Bn� 0�1 and 0�2 the plateau values of Pt are 0�01 and 0�04 respectively, which are just the squares of

Bn as dictated by the von Mises yield criterion. Figure 4 displays the distributions of the shear rate

invariant P_g calculated at various es. It can be seen that there are two branches emanating from the

point of minimum P_g at Bn� 0�1. In the high-shear-rate region (yielded ¯ow zone) the value of P_g
calculated at both es are the same, i.e. the value of P_g in the high-shear-rate region is insensitive to

the magnitude of e. The discontinuity on each branch indicates the location of the yield surface. The

left yield surface is at r � 1�1 and the right at r � 1�3. However, the discontinuity at e � 10ÿ11 is

more diffuse than that at e � 10ÿ17. In addition, in the low-shear-rate region (unyielded plug zone)

the calculated P_g at e � 10ÿ11 is much larger than that at e � 10ÿ17. In other words, P_g in the plug

zone is also affected enormously by the magnitude of e. The numerical values can never agree with

the exact values owing to the use of the regularization parameter e. Since we are only interested in the

tracking of the yield surface, we shall not pursue the accurate calculation of P_g in the plug zone

further. We next look at the case of Bn� 0�2. Since the ¯ow is stagnant at Bn� 0�2, there is only one

continuous curve for P_g across the whole gap of the annulus. Again the calculated P_g at e � 10ÿ15 is

much larger than that at e � 10ÿ31. Note that although the velocity pro®le is able to differentiate the

location of the yield surfaces in a concentric annulus, the distributions of P_g or Pt are better to use in

many critical ¯ow situations, as we shall discuss later.

Figure 5 plots the variational integral J against e for calculations at Bn� 0�1 from both ®ne and

coarse meshes, represented by full and broken lines respectively. It can be seen that the two lines

almost coincide. The mesh size seems not to affect the value of J signi®cantly. Figures 6(a) and 6(b)

display the calculated distributions of the axial velocity vz and the stress invariant Pt from coarse and

®ne meshes respectively at Bn� 0�1. While the calculated velocity pro®les do not exhibit any

signi®cant difference, the pro®les of the stress invariant clearly show different distributions at the

transition from the yielded to the unyielded region, i.e. the yield surface. Figure 7 shows the

Figure 4. Distributions of shear rate invariant P_g along radial direction at various regularization parameters
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distributions of the shear rate invariant P_g. Though the discontinuity on the right branch does not

differ much, the position of the discontinuity on the left branch for the coarse mesh shows a large

deviation from that for the ®ne mesh. An even ®ner mesh lay-out was also used, but no signi®cant

improvement was found. We therefore decided to use a regularization parameter e less than 10720

and a ®ne tesselation with 672 elements in the subsequent computations. We also plot the velocity

contours at Bn� 0�1 and 0�15 in Figures 8(a) and 8(b) respectively. The hatched annular regions in

both ®gures indicate the unyielded plug zones. As expected, the plug zone for Bn� 0�15 is clearly

larger than that for Bn� 0�1.

Figure 5. Comparison of variational integral J calculated for two different mesh lay-outs

Figure 6. Comparison of (a) axial velocity and (b) stress invariants pro®les along radial direction using two different mesh lay-
outs
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3.2. Axial ¯ow in eccentric annuli

We then consider an eccentric annulus with an eccentricity e of 0�015. Besides the uniform mesh

lay-out consisting of 672 elements, a locally re®ned mesh around the cap regions of the plug zones

consisting of 1092 elements is also used. The uniform mesh and the re®ned mesh are shown in

Figures 9(a) and 9(b) respectively. In the following discussions the results calculated from the

uniform mesh and the re®ned mesh are shown as plus signs and full or broken lines respectively.

The distributions of vz at the widest gap for Bingham ¯uids with Bn� 0�1 and 0�15 are shown in

Figure 10(a). Since the Newtonian ¯uid is the limiting case of the Bingham ¯uid as Bn tends to zero,

the results for the Newtonian ¯uid are also included as a reference. As expected, the Newtonian ¯uid

shows a parabolic distribution of vz and the Bingham ¯uids exhibit truncated parabolas. In Figure

Figure 7. Comparison of shear rate invariant pro®les along radial directions using two different mesh lay-outs

Figure 8. Velocity contours for Bingham plastic ¯uids in concentric annulus
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10(b) the distributions of vz at the narrowest gap are presented. These distributions again indicate

similar pro®les to those in Figure 10(a), except that the magnitudes of the velocities are smaller than

those in the widest gap. Notice that the width of the plateau at the widest gap (see Figure 10(a)) is

larger than that at the narrowest gap (see Figure 10(b)). The azimuthal velocity distributions at the

centre of the annulus are shown in Figure 11. The angular position is measured in degrees and is 0� at

the widest gap and 180� at the narrowest gap. The Newtonian ¯uid shows a continuous decrease in

Figure 9. Finite element tessellation of eccentric annulus with e� 0�015: (a) uniform mesh; (b) locally re®ned mesh

Figure 10. Axial velocity distributions at (a) widest gap and (b) narrowest gap for Bingham ¯uids in eccentric annulus
(e� 0�015) at various Bingham numbers
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axial velocity from 0� to 180�. However, no change can be seen for the Bingham ¯uid with

Bn� 0�15. Furthermore, the velocity distribution for Bn� 0�1 just barely exhibits two distinct

plateaux. The one on the right with larger velocity (5�0861073) corresponds to the plug zone in the

widest gap and the one on the left with smaller velocity (4�9761073) corresponds to the plug zone in

the narrowest gap. Note that the calculated results for the uniform mesh are almost the same as those

for the re®ned mesh.

In order to see whether these plug zones satisfy the von Mises yield criterion, the azimuthal

distributions of Pt and P_g are presented in Figures 12(a) and 12(b) respectively. As expected, the

Pts for the Newtonian and Bingham ¯uids are nearly constant and the magnitudes of Pt for the

Newtonian ¯uid are the lowest. Note that the magnitude of Pt for Bn� 0�1 is slightly larger than the

square of Bn; however, Pt for Bn� 0�15 is still equivalent to the square of Bn. While the distribution

of Pt does not clearly indicate the existence of the plug zone, the distribution of P_g seems to show

the plug zone more clearly in this case. In Figure 12(b) the pro®le of P_g for the Newtonian ¯uid

shows the same shape as Pt, while for the case of Bn� 0�15, P_g also remains continuous through the

half-annulus with the lowest magnitude. However, the distribution of P_g for Bn� 0�1 exhibits two

Figure 11. Axial velocity distributions in azimuthal direction for Bingham ¯uids in eccentric annulus (e� 0�015 at various
Bingham numbers

Figure 12. (a) Shear stress and (b) shear rate invariant distributions in azimuthal direction for Bingham ¯uids in eccentric
annulus (e� 0�015) at various Bingham numbers
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distinct step-like jumps at both yield surfaces at about 70� and 118� respectively. When we compare

Figure 12(b) with Figure 11, it can be seen that the shear rate invariant, which is discontinuous at the

yield surface, discriminates the unyielded plug zone more clearly than the velocity pro®le. We again

note that the calculated results for the uniform mesh almost coincide with those for the re®ned mesh.

The velocity contours for Bn� 0�1 and 0�15 are shown in Figures 13(a) and 13(b) respectively. The

plug zone for Bn� 0�1 is split into two parts because of the development of the azimuthal stress in the

eccentric annulus. However, the plug zone for Bn� 0�15 still remains intact because of the high yield

stress in the plastic ¯uid. Some authors17,20 did not identify the unyielded plug zone at the narrow

side of the eccentric annulus. In calculating the velocity ®eld, the latter authors20 used a relatively

large parameter of about 1078 and a relatively coarse tessellation of the ¯ow domain, both of which

may lead to poor resolution of the velocity ®eld. The former authors17 simply ignored the analysis of

the velocity ®eld at the narrow side. However, Szabo and Hassager8 employed the ®nite element

method to simulate the viscoplastic ¯ow in eccentric annular ducts and determined the exact shapes

of the two plug zones. Regrettably, their study was restricted to small eccentricity only.

We next take a look at the velocity contours in an eccentric annulus with e� 0�2. Figure 14(a)

shows the contours for Bn� 0�1 and Figure 14(b) for Bn� 0�15. The same case has been considered

previously.17,20 The numerical parameters used here are e� 0�2 and Bn� 0�15, which correspond to

0�4 and 0�5 respectively in the aforementioned works. The difference is due to the different scaling.

The velocity contour plot and the plug zone at the wide side of the annulus for Bn� 0�15 shown in

Figure 14(b) agrees well with the previous results, except that both studies did not identify the exact

region of the stagnant plug at the narrow side. Figure 14(a) shows the velocity contour plot for

Bn� 0�1. The mobile plug zone at the narrow side nearly ®lls the gap width. It is worthy of note that

for viscoplastic ¯uids the azimuthal width of the plug zone at the narrow side begins to decrease as

the eccentricity increases; however, after the plug zone ®lls the gap width, the ¯uid stops ¯owing

inside the plug and the azimuthal width increases as the eccentricity increases. On the other hand, the

Figure 13. Velocity contours for Bingham plastic ¯uids in eccentric annulus with e� 0�015
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azimuthal width of the plug zone at the wide side keeps decreasing as the eccentricity increases, until

the ¯ow becomes stagnant throughout the annulus.

3.3. Axial ¯ow in an L-shaped duct

We also consider the plastic ¯ow in an L-shaped duct. The interest in studying the L-shaped duct

lies in the corner singularity which has been reported previously by Atkinson and El-Ali.22 However,

their method of analysis can only calculate the ¯ow ®eld near the apex of the corner and is not

applicable to the global ¯ow ®eld in the duct. Huigol and Panizza17 also analysed the L-shaped duct

¯ow but did not show the exact shape of the stagnant plugs near the right-angled corners.

The ®nite element mesh for tessellating the ¯ow domain is shown in Figure 15. Figure 15(a) shows

a uniform mesh consisting of 2187 elements. Figure 15(b) shows a locally re®ned mesh around the

centre and along all sides, where the number of elements is 1612. The re®ned mesh was generated

relative to a central point at which the axial velocity of the Newtonian ¯uid is the maximum. Note

that the elements surrounding the central point are triangular elements. The shorter sides of the duct

are half the lengths of the longer sides. The origin set at the bottom left corner, which is also labelled

as the ®rst corner. Other corners are labelled as the second, the third, etc. following the counter-

clockwise direction. Note that the fourth corner is the only corner with an included angle of 90�.
The diagonal distributions of the axial velocity starting at the ®rst corner and ending at the fourth

corner for the Newtonian ¯uid and Bingham ¯uids with Bn� 0�1, 0�15 and 0�18 are shown in Figure

16. The diagonal positions are measured from the ®rst corner to the fourth corner. The results

calculated from the re®ned mesh are shown as the chain line. It can be seen that the axial velocity

starts to increase from the ®rst corner in the Newtonian ¯ow, reaches the maximum at the duct centre,

then decreases monotonically to the fourth corner. Apparently there are two positions of zero shear.

One of them is located at the ®rst corner and the other at the duct centre. Since the Newtonian ¯uid is

Figure 14. Velocity contours for Bingham plastic ¯uids in eccentric annulus with e� 0�2
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the limiting case of the Bingham ¯uid as Bn tends to zero, it is expected to observe two plateaux in

Figure 16 for all Bingham numbers. Firstly, the plateaux around the duct centre can be clearly seen,

indicating the existence of mobile plugs. These plateaux are in the regions between about 0�31 and

0�61 for Bn� 0�1, between about 0�24 and 0�66 for Bn� 0�15 and between about 0�13 and 0�70 for

Bn� 0�18. Secondly, the velocity pro®les of Bingham ¯uids seem to become ¯at around the ®rst

corner, where the magnitudes of the velocity are extremely small. Such results may indicate the

existence of stagnant plugs at the ®rst corner. However, it is not easy to see the sizes of these plugs.

Also note that the calculated results from the two mesh lay-outs are nearly the same.

The distributions of P_g calculated from the different mesh lay-outs are presented in Figure 17.

Though the results agree well in the high-shear-rate regions, they differ somewhat in the unyielded

regions, particularly around the duct centre. None the less, they all display similar pro®les. As

discussed previously, there are two minima located at the centre and at the ®rst corner in the

Figure 15. Finite element tesselation of L-shaped duct: (a) uniform mesh; (b) locally re®ned mesh

Figure 16. Axial velocity distributions from ®rst corner to fourth corner at various Bingham numbers
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Newtonian ¯ow. Likewise, distinct changes in slope can be observed in Figure 17 for all Bingham

numbers around the duct centre and at the apex of the ®rst corner. The two transitions around the duct

centre clearly indicate the regions of the mobile plugs. Though one can see the third transition at the

®rst corner, it is not easy to identify the sizes of the stagnant zones. These plug regions are in general

agreement with those shown in the velocity distributions. However, unlike the cases of eccentric

annular ¯ow, the distributions of P_g do not discriminate the yield surfaces very well, particularly

around the corner. It is also interesting to note that the P_g distributions calculated from the uniform

mesh show sharper transitions than those calculated from the locally re®ned mesh. In order to further

clarify the positions of the yield surfaces, we are going to look at the distributions of the stress

invariant Pt.

In Figure 18 we present the distributions of Pt calculated from the different mesh lay-outs. Like

the velocity distributions, all the calculated Pts from the different mesh lay-outs are nearly the same.

Two ¯at segments, where the values of Pt are equal to the squares of Bn, can be clearly seen in this

plot for all Bingham numbers. The long segments in the middle of the curve correspond to the mobile

plugs around the duct centre, while the short segments at the left correspond to the stagnant plugs at

Figure 17. Shear rate invariant distributions from ®rst corner to fourth corner at various Bingham numbers

Figure 18. Shear stress invariant distributions from ®rst corner to fourth corner at various Bingham numbers

DUCT FLOW OF BINGHAM PLASTIC FLUIDS 1039

# 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 25: 1025±1042 (1997)



the ®rst corner. It is interesting to see the enlargement of both the mobile plugs and the stagnant plugs

with increasing Bingham number. Furthermore, the breadth of the peak area, which represents the

size of the yielded zones, decreases as the Bingham number increases. In fact, the ¯ow will be

stagnant everywhere in the duct when the peak disappears. The velocity contour plots for Bn� 0�1,

0�15 and 0�18 are shown in Figures 19(a)±19(c) respectively. The velocities of both the mobile plugs

and the stagnant plugs are decided according to the positions where the ¯at segments in the

distributions of Pt are found. It can be clearly seen that there are stagnant plugs at all right-angled

corners for Bn� 0�15 and 0�18. However, the size of the stagnant plugs is too small to be seen clearly

at Bn� 0�1.

4. CONCLUSIONS

We have illustrated the use of the ®nite element method in conjunction with the regularization

technique for simulating a pair of steady duct ¯ow problems. Unlike previous studies using the

perturbation or singular expansion methods, which were limited to either small annular gap or small

eccentricity in eccentric annuli and also limited to corner regions in non-circular ducts, the present

technique is applicable to any regions in irregular geometries. Moreover, the effects of the

regularization parameter and the re®nement of the mesh size on the calculated ¯ow ®eld are analysed

in detail. A small regularization parameter and a resonably ®ne tesselation of the ¯ow domain are

necessary for accurate computations. The use of too large a parameter or too coarse a tesselation often

leads to poor resolution in critical regions.

For the eccentric annular ¯ow of viscoplastic ¯uids it has been shown that at small eccentricities

there is only a single mobile plug across the whole annulus. Further increase in the eccentricity results

in the splitting of the mobile plug and eventually a stagnant zone will appear at the narrow side of the

annulus when the eccentricity becomes large enough. For the ¯ow in an L-shaped duct it can be seen

clearly that stagnant regions exist at the right-angled corners and no plug zone can be found at the

blunt angle of 270�. The size of either the mobile plug or the stagnant plug increases with increasing

Bn. Also note that as Bn tends to zero, the Newtonian ¯uid is the limiting case of the Bingham ¯uid.

Hence the position of zero shear in a Newtonian ¯ow is also the position of the plug zone in a

viscoplastic ¯ow.

Figure 19. Velocity contours for Bingham plastic ¯uids in L-shaped duct
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In the future it is expected that the present numerical procedure could be extended to two- and

three-dimensional ¯ow problems without dif®culty. Other viscoplastic models involving shear-rate-

dependent viscosities could be included as well.
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APPENDIX: NOMENCLATURE

Bn Bingham number, Y=h*�ÿdp*dz*�
e eccentricity (dimensionless)

h* characteristic length of duct (dimensional): inner radius for annular ¯ow; length of long side for

L-shaped duct ¯ow

J variational integral given in (4) (dimensionless)

Ni element shape functions

p* ¯uid pressure (dimensional)

uz test ¯uid velocity (dimensionless)

vz axial ¯uid velocity (dimensionless)

Y yield stress (dimensional)

x; y rectangular co-ordinates (dimensionless)

z axial ¯ow direction (dimensionless)

Greek letters

_g shear rate tensor

e regularization parameter

Z apparent viscosity (dimensionless)

ZB Bingham plastic viscosity (dimensional)

P_g second invariant of shear rate tensor (dimensionless)

Pt second invariant of shear stress tensor (dimensionless)

t shear stress tensor

O volume of ¯ow domain
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